BASIC ELECTRICAL ENGINEERING

UNIT -4 ELECTRICAL MACHINES

Vibha Masti

Feedback corrections: vibha@pesu.pes.edu

Basics of machines

DC

D Generator 2) Motor

AC

y
P) $transformer (1-\phi)$ 3-9 induction motor

Electromagnetic Induction

Faraday's First Law conductor moving in \vec{B} => emf generated

Faraday'^s Second Law magnitude of emf induced a rate of change

Lenz's Law direction always opposes change in flux

<u>Induced</u> emf

1) Statically induced emf

- · transformers
- · induced with stationary conductors
-
- allowing an AC

Self-induced emf
- nutually induced emf

2) Dynamically induced unf . Moving conductors

DC Generator

working Principle

- 1. Faraday's EM induction
- . AWG American wire Gauge
• SWG Standard wire gaug
- 6 standard wire gauge sw G - so - thinnest
- EMF induced is given by rate of change of flux

2. Dynamically induced EMF

• rotating pump (conductor)

Simple DC Generator

- · If slip-rings are used, AC is generated
- · If split-rings used, pulsating unidirectional writent
- · Also called commutator (mechanical rectifier); cannot use diodes to rectify
- · Brushes collect current /voltage at output

Construction of DC Machine (Motor or Generator)

Input: primary mover/shaft moved

Armature system all moving parts.

Field system all stationary parts

$\frac{u_{\text{r}}}{\sqrt{2}}$ eye

- on top of machine
- hooking for cranes to lift

Base

- concrete and cement
- machine is bolted ^g fixed to it
- avoid vibrations

field System

Yoke

- outer frame of generator / motor
- a functions
	- ^D mechanical support for pole body
	- 2) Proper path for magnetic field in machine

Pole core

- stationary
- electromagnets are cheaper, lighter and more flexible
- to hold field windings
- separately excited DC generated
- two adjacent poles with opposing polarities . four pole machine shown
-
- a copper field windings

Pole shoe

• cylindrical for uniform B, at the base of pole body

Air gap

- for armature to easily rotate
- ^e between the stationary and moving parts

Field windings

• wound on pole cores in opposing directions

DC Excitation

• external supply for field windings (here , separately excited)

Armature system

Armature Core

- laminated and slotted Cthin sheets)
- avoid eddy current and hysteresis loss
- slots for armature windings

Armature windings

- emf is induced here
- . armature fixedto shaft and rotates
- conductors in slots rotate
- conduc
• cut B ' and emf induced
- made of Cu

ventilation ducts

• to dissipate heat

commutator

- mechanical rectifier for AC-7 DC
- many split rings
- rotates with armature
- · brush forced onto commutator
- armature windings terminate here

Shaft

- armature q commutator attached
- rotates

Brushes

- collect wrrent
- use springs

TYPES OF ARMATURE WINDINGS

- I. LAP WINDING
- $2 MAVE$ WINDING
- . Difference in how they terminate at commutator
- · can be simplex, duplex or multiplex

LAP WINDING

two ends of coil connected to adjacent segments of commutator

no of parallel paths (A) = no of poles (P)

- · high wount rating low voltage ruting
· no of conductors CZ)
-

Eg: Machine rating for 2-16, V clonds-10V, I C conds=10A $\rho - 4$

WAVE WINDING

EMF Equation for DC Generator

Nomenclature

 $z = \text{no}$ of armature conductors of ⁼ useful flux per pole N = speed of armature in rpm
P = no of poles $A = no$ of parallel paths Eg = EMF induced in any parallel path

Flux cut by a single conductor in one revolution = Pg

Time taken by conductor to complete me revolution

= 61 see N

EMF induced in ¹ conductor

$$
\epsilon = \frac{d\phi_{\text{tot}}}{dt} = \frac{\rho\phi \rightarrow \text{flux linear}}{\frac{(\omega\phi)}{\sqrt{N}} \rightarrow \text{time}}
$$

E = PON 60 conductors no - of

$$
EMF induced per parallel path = \frac{perpmule}{100}
$$
\n
$$
R = \frac{P\Phi N}{60} \times \frac{Z}{A} = \frac{P\Phi NZ}{60A}
$$

For lap , P- -A

For wave, $A = 2$

Eg ⁼ P0N2_ 60×2

TYPES OF DC GENERATORS

- 1. SEPARATELY EXCITED
- 2- SELF EXCITED
	- ELF EXCITED
— series wound
		- series wound
	- ↳ compound wound

1. Separately Excited DC Generator

- · single letter the, double letter -ve
-
- . 4: generator
· Field altered by external DC supply
· Single entity, Not separate
-
-
-
- · Eg emf generated
· V terminal voltage
· Le load wrrent
-
- · If field current

Relationships

$$
1a = 1. \t{drop inGraphureEq = V - JakaLin parallel paths)
$$

Power developed = $E_g I_a$

Power delivered = VIL

2. self Excited DC Generator

a. series wound DC Generator

Field windings: low no . of turns thick conductor Clow resistance) carries load current delivers load voltage

relationships

$$
E_{q} = V + I_{a} (R_{se} + R_{a})
$$

Power developed = EgIa

Power delivered = VIL

b Shunt wound DC Generator

Relationships $Ia = Ish + Ib$ $T_{sh} = \frac{V}{R_{sh}}$ $E_g = V + I_a R_a$ Power developed = Egta Power delivered = VIL

c compound wound OC Generator

is short shunt

9: ^A six-pole wave-wound armature has 300 conductors and runs at a speed of 1000 rpm. The emf generated on open circuit is 400V. Find the useful flux per pole.

$$
E_3 = \frac{poles}{poles}
$$

$$
400 = \frac{6}{6} \frac{\phi (1000)}{2}
$$

 ϕ = 400 1008150 = $\frac{2}{15}$ Weber

ϕ = 26.67 mWeber

O: A four - pole ¹⁵⁰⁰ rpm dc generator has a lap - wound armature having ³² slots and ⁸ conductors per slot . If the flux per pole is 0.04 weber, calculate emf induced in the armature.

What would be the Unf induced if the winding was wave connected?

Lap: Eg - he em
<u>APNZ</u>
60A $\overline{\mathbf{z}}$ no. of conductors $=(0.04)(1500)(32718) = 2560$

wave :

9: ^A 4-pole wave connected generator has a useful flux of 0.02 Webers per pole. If the emf induced is 2ftVat 0.02 Webers per pole It the emf induced is 286 Va-
1200 rpm, find 2 in armature. If each Not contains ¹⁰ conductors, find no . of shots . eted generator
If the emf
imature. If e
PONZ
COA
(4)(002)(1200)
(69)(2)
COO2)(1200)

$$
E_9 = \frac{P\cancel{b}N}{60\,\text{A}}
$$

288 = <u>(4)(002)(1200)</u> Z $(60)(1)$

 z =360 conductors

 $no. of $slots = 36$$

O: the armature of ^a E- pole lap wound shunt generator has ¹²⁰ slots with ⁴ conductors per slot. The flux per pole is 0.05 weber The armature resistance is 0.05 p. The shunt field newstanee is 50N. Find the speed of the machine when supply 450A, V=250V

 $2 = 120 x4$ $1 = 450 A$ $Q = 0.05$ weber $v = 250$ $R_A = 0.05$ s R_{gh} - 50 p

Oi. A 6- pole armature is wound with ⁴⁹⁸ conductors . The speed and flux are such that the average emf generated in each conductor is av. The current in each conductor is 120 A. Find total current and generated emf of armature if the armature coils are in wave wound 0 Lap wound

Also find the total power generated in each case.

 $P=6$ $E_{cond} = 2V$
 $Z=498$ $T_{cond} = 120A$ $I_{a} = ?$ $E_{0} = ?$ power=?

4) WONE

 $A = 2$

 $E_0 = \frac{Z}{A} \times E_{cond}$ $E_8 = \left(\frac{498}{3}\right)(12) = 498 \text{ V}$

 $I_{\alpha} = I_{cond} \times A = Q40 A$

power generated = Eg Ta

 $\ddot{\omega}$) lap $A = P = 6$

$$
E_0 = \frac{Z}{R} \times E_{\text{cond}} = \frac{498}{6} \times 2
$$

$$
\mathcal{C}_h = 166 \text{V}
$$

$$
I_a = I_{\text{total}} \times A = 120 \times 6
$$

 I_1 = 720 A

power delivered: 119.52 kw

- \cdot Electrical \rightarrow mechanical
- · Principle: a current-carrying conductor experiences
a force when placed in a uniform B
crieming's Left Hand Rule)
- Fleming's Left Hand Rule (also $\vec{F} = \vec{J}(\vec{l} \times \vec{B})$

Simple Case of λ conductors (1 coil)

N

- when two conductors are perpendicular to magnetic field lines, thereis no net torque Cmotor stops)
- Dead centre: forces equal and in same line
- therefore , we use multiple conductors
- when the conductors are displaced slightly from dead centre , the torque is restoring
- The dead centre is a stable equilibrium
- we obtain pulsating torque
- ^e therefore , we use a commutator to change the

Back emf

- Armature starts rotating under the influence of magnetic field (windings)
- . emf produced by armature that opposes supply voltage is called bould Emf.

$$
\varepsilon_{b} = \frac{\rho \phi_{N2}}{60 \text{A}}
$$

$$
V = JaRa + E_b
$$

$$
VIa = E_bIa + Ia^2Ra
$$

✓La : power given to armature

 $\epsilon_{\rm b}$ Ia: electric form of mech. energy

I_a²R_a: electrical loss in armature windings

- . Due to back emf, DC motor is a self-regulating
- Automatically adjusts speed based on load

Torque Equation of DC Motor

work done by armature in one rotation

 $W = F \times 2\pi r$ Joule

Power developed in armature = work done in I sec

N - rev per min $\frac{N}{10}$ = rev per min
 $\frac{N}{10}$ = rev per sec

 $\frac{60}{N}$ = time per rev

Ta

 $\therefore P = F_{x2}x + F_{y2}$ $\frac{60}{N}$ 60 an 10
10
2 n N Ta
60

P = $2n$ NTa 60

Power developed = elec. eq. of mech energy

 $\frac{\partial n \textbf{N} \textbf{Ia}}{\partial \textbf{O}} = \frac{P \textbf{0} N Z}{60 A}$ Ia $60-$

 \rightarrow constants

 $T_a \propto \phi T_a$

 p = flux produced by machine

current in field windings I_{th}

 $I_{sh} = \frac{V}{R_{sh}} =$ constant

 $\frac{1}{1}$ Ta α Ia

- De shuat cyllabas
- S) DC compound

DC Shunt Motor

Q: 4-pole wave wound motor is connected to ⁵⁰⁰ ^V DC supply and takes $I_a = 80A$ $Ra = 0.4r$, $Z = 522$, useful $p = 0.025$ Wb. Calculate backemf, speed (N), Ta

V=500 V A = 2
\n
$$
J_a
$$
 = 60A 2 = 522
\n R_a = 0.4.52
\nV = E_b + J_a Ra

$$
\varepsilon_{b} = 468 \text{ V}
$$

$$
V = Eb + Ia Ra
$$

\n
$$
Eb = 468 V
$$

\n
$$
Eb = PQ NZ \Rightarrow N = 60 \times Eb X A
$$

\n
$$
60 A
$$

N- - 1075.86

$$
N = 1075.86
$$

$$
T_a = \frac{1}{2\pi} \frac{P\phi Z I_a}{A}
$$

 T_{a} = 332.31 Nm

Q: Armature, Ra= o.in, ²⁵⁰ ^V supply . Calculate emf generated when it is d) generator giving to ^A ^④ > motor giving ⁶⁰ ^A

(i) generator

$$
\begin{array}{rcl}\n\varepsilon_0 &=& \sqrt{1+1} a R \alpha \\
&=& \sqrt{1+1} a R \alpha \\
&=& \sqrt{1+1} a R \alpha \\
&=& \sqrt{1+1} a R \alpha\n\end{array}
$$

in motor

$$
E_b = V - I_a R_a
$$

=
$$
ASD - bO \times D
$$

=
$$
AU \cup V
$$

Q: A 4-pole DC shunt motor takes 22.5 A from 250 V supply Armature resistance = 0.52. Field resistance = 1252. Wave wound. z -300 . ϕ = 0.02 wb. Calculate N , Ta, P.

$$
I_{sh} = aA \qquad I_{L} = 22.5
$$

$$
I_L = I_{th} + I_{0}
$$

$$
T_{\alpha} = 20.5 A
$$

$$
E_b = V - I_a R_c = 250 - 10.25 = 239.75
$$

$$
\epsilon_{b} = \frac{\rho_{b} \omega z}{60 A}
$$

N= <u>60x E₆xA</u> = 1198.75 mm⁻¹ $P \cancel{\phi}$ 2

$$
N = \frac{60 \times E_b \times A}{PQZ} = 1198.75
$$

$$
T_{QZ} = \frac{1}{27} \frac{PQZZ}{A} = 39.15 Nm
$$

$P = E_p I_a = 4.915$ kW

8. 25 kW, 250V DC shunt machine hos armature and field
resistance of 0.06 s and 100 s respectively. Determine total
armature power developed when working as
in generator delivering 25 kW output.

$$
\frac{1}{2} = \frac{25 \times 1000}{850} = 100 \text{ A}
$$

\n $R_A = 0.06 \text{ A}$ $R_{sh} = 100 \text{ A}$ $\Rightarrow T_{sh} = 2.5 \text{ A}$
\n $T_A = T_L + T_{sh}$
\n $T_A = 102.5 \text{ A}$
\n $F_{sh} = 102.5 \text{ A}$
\n $P_{h0k} = E_{0}T_{A} = 26.255 \text{ A}$
\n(i) $T_{L} = \frac{25000}{250} = 100 \text{ A}$
\n $T_{L} = T_{A} + T_{sh}$
\n $T_{sh} = \frac{250}{100} = 25 \text{ A}$
\n $T_{A} = 97.5 \text{ A}$
\n $E_{L} = 11 - T_{A}R_{A} = 249.15 \text{ V}$

 $P_{tot} = 23.804$ kW

Q: 10 kW, 250 V DC shunt motor with armature resistance of 0.8 st and field resistance 275s takes 3.91 A when running on light at rated voltage and rated speed. (a) Find constant loss (b) Calculate machine efficiency as a generator when delivering output of 10kW at rated voltage and

speed and used as ^a motor drawing input of 10kW .

Running on light ⁼ no load ideally , no power

power to meet its losses

total loss ✓ of machine

* &

ca) $P = VI_L = 250 \times 3.91 = 977.5 \text{ W}$ (var + wart)

Total loss = constant loss + variable loss

 w_1 = w_0 + w_0 \leftarrow only u_1 no field

 $Wv = Ia^2Ra$

 $I_a = I_b - I_{bh}$ = $\frac{1}{\mu}$ $\frac{V}{P_{s1}}$ = 3 A

 W_1 = 7.20 W

 W_c = 977.5 - 7.20 = 970.3W

CD As a generator

n as

Output Power
$$
P_{out} = 10 \text{ km}
$$

\n $P_{in} > P_{out} + 10 \text{ km}$
\n $P_{in} > P_{out} + 10 \text{ km}$
\n $P_{in} = 10 \text{ km} + W_v + W_c$
\n $I_L = P_{out} = 10000 - 1000$
\n $I_R = I_L + I_{sh} = 4000$
\n $I_R = 40.91 \text{ A}$
\n $W_V = 1338.8 \text{ W}$
\n W_C is constant with drift holds
\n $P_{in} = 10000 + 1338.8 + 970.3$
\n $P_{in} = 12309.14 \text{ W}$
\n $I = 81.34$

7801.22 $= 78.07$ % $M =$ 10000

AC MACHINES ↳ Transformer ↳ Induction motor

TRANSFORMER

- Static device no moving parts Eddy current losses, hyste
-
- varies voltage
- High efficency

Parts

- core
- primary windings input
- secondary windings - load

Principle:

• mutual induction

Types of Transformers

- i . step up
- 2- step down

core

. cores are laminated to avoid Eddy current losses

Lamination of Lore

2) Multiple laminations

alternate orientation of layers

$$
\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\begin{array}{ccc}\n\hline\n\end{array}\n\end{array}
$$

Working Principle

Mutal induction between two magnetically coupled windings.

if $N_z > N$, step up transformer

if N₁> N₂ step down transformer

For ideal transformer

input CVA) = output (VA)

 $E_{1}I_{1} = E_{2}I_{2}$

$$
\frac{\mathbf{I}_{\mathbf{y}}}{\mathbf{I}_{\mathbf{t}}} = \frac{\mathbf{E}_{\mathbf{y}}}{\mathbf{E}_{\mathbf{y}}} = \frac{\mathbf{N}_{\mathbf{y}}}{\mathbf{N}_{\mathbf{z}}}
$$

TYPES OF TRANSFORMERS

how windings are wound around core 1) Core Type
2) Shell Type

Core Type

- 2 limbs
- single piece or U-I or L-L
- ° Fux leakage is more
- . inter-leaving Chalf & half windings) to reduce flux leakage
- core used for high rating transformers

Shell Type

- ° 3 limbs
- au windings on central limb
- · low tux leakage
- low rating Curo VAC OP)
- \cdot ε ε and ε ε

- $V_1 = V_m$ sin wt
- ϕ = ϕ m sin wt
- $e_i = -N_i \frac{d\phi}{dt}$ (self induced)
- e_i = $N_i \omega$ $\phi_m \omega s \omega t$
- $e_1 = -2\pi f N$, ϕ_m in (wt -90°)
- $e_m = \omega N_1 \phi_m$ (peak value)
	- $E_1 = \frac{e_m}{\Omega} = \frac{\omega N_1 \phi_m}{\Omega}$ (rms value) = $\frac{2\pi F N_1 \phi_m}{\Omega}$

 $E_1 = 4.44 f N_1 \phi_m$

 $E_{2} = 4.44 + N_{2}$ Om

Difference between DC motor and Induction Motor

Nicholas Tesla invented DC Motor AC motor

- Armature made to rotate · Rotor rotates due to using supply through brushes EMI and commutator
- . Conduction motor **.** I is the induction motor

Advantages of ³⁰¹ Induction Motor

- self -
- start-starting
• high efficial
- high efficiency
• simple construction Lno brushes/commutators)
• industry use
-
- industry use
- a simple

construction

. two main parts

 \Box

 \mapsto rotor -

mpplied to
stater
windings Soutes Crmf: rotating

- Laminated core Dc: outer
- slots at inner periphery •
- · Insulated statur conductors placed inside the slots
- star or delta -3ϕ

Rotor

1) Squirrel cage Rotor

-
- no wires; Al/Cu bars in rotor slots
• short-circuited by end rings cehort circuiting rings)
• low cost
-
-

2) Phase wound Rotor Islip Ring Rotor

- one end left open q connected to brush & slip
-
- · high include resistance

1) Squirrel Cage

- slots in outer periphery
- laminated core

resistances

- · not exactly parallel to prevent magnetic locking and humming ^Cskewed)
- no of slots on stator \neq no of slots on rotor stats \neq no

motor will not start

2) Phase wound Rotor / Slip Ring

- expensive, high maintenance
- . 3p winding whally star
- slip ring at other end

Concept of RMF

- ^e self starting induction motors
- 3-of flux created of constant magnitude
- · Aux rotating at speed called synchronous speed (M)
-

Ng ⁼ 12of ← must y remember

f- frequency ^P ⁼ no . of poles

O. A 50 kVA transformer has 300 turns on primary
winding and 20 turns on sewndary winding connected
to 2200 V, 50 Hz supply Calculate
in appox value of 4, and I, on full load
iii) max value of flux

$$
N_1 = 300
$$

\n $N_2 = 20$
\n $C_1 = 2200$ V

(i)
$$
\frac{E_1}{E_2} = \frac{N_1}{N_2} \Rightarrow E_2 = \frac{E_1 N_2}{N_1} = \frac{440 \text{ V}}{3}
$$

$$
\varepsilon_{2} = 146.67
$$
 V

$$
10 \qquad \qquad \text{power} = 50 \text{ KVA}
$$

$$
\mathcal{E}_1 \mathbf{I}_1 = \mathcal{E}_2 \mathbf{I}_2 = 50 \text{ kV}
$$

$$
I_1 = 250 = 22 - 72
$$
 A

$$
L_{\rm s} = 340.90
$$

$$
C_{\text{ini}} = C_1 = \frac{2nF N_f \phi_m}{G}
$$
 or 4.44 F N_f ϕ_m

$$
2200 = 4.44
$$

$$
p_{m} = 0.033
$$
 Wb

F

A: the primary winding of a transformer is connected to a40 V, 50 Hz supply. The secondary winding has 1500 ard v, so Hz supply. The secondary winding has 1500 determine

is secondary induced emf iis no .of turns on primary Ciii) core area of cross core area of cross-section if the flux density
has its max value of 0.465 Tesla

 $E_1 = 240V$ f = 50 Hz N_2 = 1500 $p_m = 2.07 m$ Wb

 $\omega = E_2 = 4.44 f N_2 \phi m$ ε_{2} = 689.76 V

GIT $N_1 = N_2 \times C_1 = 522-61 = 523$ ϵ_{ν}

din $\frac{\rho_m}{A}$ = 0.465 => A = 4.45 x 10² m²
= 44.5 x 10⁻⁴ 4 \mathbf{w}^2 $= 44.5$ cm²

O: ^A single phase ²⁰ kVA transformer has ¹⁰⁰⁰ primary turns and ²⁵⁰⁰ secondary turns - The net cross sectional area of the core is $\frac{0}{100}$ cm². when primary winding
is connected to 500V, 50 Hz supply, calculate the Max value of flux density in the core , voltage induced in the secondary winding, primary and secondary currents.

$$
N_1 = 1000
$$
 $E_1 = 500V$ $f = 50Hz$
\n $N_2 = 2500$ $P = 20$ VVR
\n $A = 100$ cm²
\n(i) flux density (max)
\n(ii) E₂
\n(i) E₁
\n(i) F₁
\n(i) T₂

$$
E - \Omega \text{R} + N, \phi \text{m}
$$

$$
\phi_m = \frac{500}{(2\pi(56)(1500))} = \frac{1}{\sqrt{2} \times 100\pi}
$$

$$
\phi_{m} = 2.25 \times 10^{-3}
$$
 Wb
 $\phi_{m} = 0.235$ T

$$
\hat{v} = \frac{\hat{p}_m}{\hat{p}} = 0.225 \text{ T}
$$

$$
\frac{\partial u}{\partial t} = \frac{\partial u}{\partial t} = \frac{\partial u}{\partial t} = \frac{\partial u}{\partial t} = \frac{\partial u}{\partial t}
$$

$$
\lim_{\delta \to 1} \epsilon_{1,1} = 20 \times 10^3 = \epsilon_{1,1}
$$

$$
I_1 = \frac{20 \times 10^3}{500} = 40 \text{ A}
$$

 $E_1 I_2 = 20 \times 10^2$ $\overline{(\overline{v})}$

$$
\mathbf{I}_{2} = 16 \text{ A}
$$

Q: A six-pole induction motor is connected to a 50Hz supply. It is running at a speed of 970 rpm, Find synchronous speed and slip .

^P ⁼ ⁶ f- ⁼ 50112 N- - ⁹⁷⁰ rpm

$$
N_S = \frac{20}{6} = \frac{20}{120450} = 1000
$$
 cm

 $\frac{1}{600}$ - 1000 - 970 - 37. $\frac{1000 - 97}{1000}$